
JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005 1

General Algorithms for Construction of Broadcast and
Multicast Trees with Applications to Wireless Networks

Gam D. Nguyen

Abstract: In this paper, we introduce algorithms for constructing
broadcasting and multicasting trees. These algorithms are general
because they may be used for tree cost functions that are of ar-
bitrary form. Thus, essentially the same algorithmic procedures
are used for different tree cost functions. We evaluate the effec-
tiveness of the general algorithms by applying them to different
cost functions that are often used to model wired and wireless net-
works. Besides providing a unifying framework for dealing with
many present and future tree-construction applications, these al-
gorithms typically outperform some existing algorithms that are
specifically designed for energy-aware wireless networks. These
general algorithms perform well at the expense of higher compu-
tational complexity. They are centralized algorithms, requiring
the full network information for tree construction. Thus, we also
present variations of these general algorithms to yield other algo-
rithms that have lower complexity and distributed implementation.

Index Terms: Arbitrary cost function, broadcast, multicast, tree,
wireless networks.

I. INTRODUCTION

Structures called trees are fundamental and important because
they are required in many applications. For a given tree, we can
assign a number that represents the cost of using this tree. The
goal of a tree-construction algorithm is to produce a tree that in-
cludes a given set of vertices and has the least cost. With tradi-
tional approaches, whenever the cost function changes, the algo-
rithm also changes to incorporate and reflect the newer cost def-
inition. In other words, new cost functions require new research
efforts to design new algorithms. For example, great research
efforts are exerted on the development of tree-construction algo-
rithms for wired communication networks, in which link costs
reflect the properties of wired networks. For different types of
networks, such as wireless networks, it is expected that research
is required to develop newer algorithms that exploit the wireless
network properties, resulting in better performance than algo-
rithms previously designed for wired networks. Are there gen-
eral algorithms (or at least a general framework) that are appli-
cable to any cost functions? In this paper, we introduce such
algorithms.

Specifically, we first present an algorithm for constructing
broadcast trees, which is general because it may be used for cost
functions that are of arbitrary form. That is, we impose no re-
strictions whatsoever on the cost functions (with the exception,
of course, that the costs are non-negative). We then modify the
general broadcast algorithm to yield a general multicast algo-

Manuscript received June 21, 2003; approved for publication by Elvino S.
Sousa, Division II Editor, November 12, 2004.

The author is with the Information Technology Division, Naval Research Lab-
oratory, Washington DC, 20375, USA, email: nguyen@itd.nrl.navy.mil.

rithm, which is also for cost functions that are of arbitrary form.
Whenever a problem arises and seeks to optimize a new tree
cost function, which can be of any form, a version of our gen-
eral algorithms can be used as a heuristic baseline solution to
the problem. This baseline solution then can be compared to so-
lutions of other algorithms that are designed to solve the same
problem.

We evaluate the effectiveness of the general algorithms by
applying them to different cost functions that are often used to
model wired and wireless networks, and by comparing their per-
formance to some existing algorithms. For wireless multihop
networks (also called infrastructureless, peer-to-peer, or ad hoc
wireless networks), we consider tree-construction algorithms for
the use of omnidirectional and directional antennas, and we also
address the impact of constraints on resources such as energy,
transceivers, and frequencies [1]. Besides providing a unifying
framework for dealing with many tree-construction applications,
these general algorithms typically outperform some other exist-
ing algorithms that are specifically designed for energy-aware
wireless networks. These general algorithms, which are of cen-
tralized nature, perform well at the cost of higher computation
complexity. Thus, we also adapt these algorithms to yield algo-
rithms that have lower complexity and distributed implementa-
tion. The preliminary version of this paper is [2].

The rest of this paper is organized as follows. In Section II,
we first review basic terminologies for trees. We then discuss the
cost definitions used in wired and wireless network problems.
These important problems will serve as example applications of
our general algorithms. In Section III, we state the general al-
gorithm for broadcasting (Algorithm B), and its corresponding
multicasting version (Algorithm M). We then in Section IV ap-
ply the general algorithms to the problems in wireless networks.
In Section V, we present 2 algorithms (Algorithm B1 and Al-
gorithm B2) that have lower complexity than Algorithm B. One
algorithm is a distributed algorithm, the other is a centralized
one. We summarize the paper in Section VI.

II. DEFINITIONS OF COST FUNCTIONS

Let V = {1, 2, · · · , N} be the set of vertices, and let S be a
subset of V . Here we consider trees that must include S and may
include vertices in V − S. Assume that for a given tree T , we
can assign a cost d(T) ≥ 0 (no other restrictions are imposed on
the cost function). Denote dij as the cost of the tree consisting
of only 2 vertices i and j. This simple tree is also called the edge
(i, j), i.e., dij is the cost of the edge (i, j). Note that dij may or
may not be equal to dji. A tree has a root vertex, other vertices
are called its descendants. It is desirable to design an algorithm
for constructing a tree T that includes the set S, such that the
cost d(T) is minimum.

1229-2370/05/$10.00 c© 2005 KICS

G.D. Nguyen, “General Algorithms for Construction of Broadcast and Multicast Trees with
Applications to Wireless Networks”, Journal of Communications and Networks, vol. 7, no. 3,
pp. 263-277, September 2005

2 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

In this paper, we also use terminology from the network de-
sign viewpoint. Thus, a node is identified with a vertex, and a
link with an edge. The subset S is called the multicast group,
which consists of the root vertex (also called the source node)
and other vertices (also called the destination nodes). The prob-
lem of constructing trees including the nodes of S is called the
multicast problem. In particular, the problem is called unicast
when |S| = 2, and broadcast when |S| = N . In summary,
we can restate the abstract tree-construction problem in terms of
network design applications as follows. Let V = {1, 2, · · · , N}
be the nodes of a network, and S be a subset of V . Suppose that
a member r of S wants to communicate (e.g., to send a message)
to all other members of S. We can accomplish this communica-
tion by constructing a tree T that includes S and is rooted at the
source node r. In general, the tree may also include other nodes
in V as relay nodes. The cost of using a tree T is denoted by
d(T). It is desirable to construct a tree of minimum cost. The
general algorithms in this paper are applicable to any cost func-
tions. We then evaluate the effectiveness of these algorithms by
applying them to wired and wireless networks.

A. Wired Networks

For a given tree T , consider the cost function defined by

d(T) =
∑

i,j

dij (1)

where the summation is over i and j such that i < j and (i, j) is
a link of T . Here we assume that dij = dji. Constructing a tree
T including S such that (1) is minimized is called a Steiner tree
problem, which is a subject of extensive studies [3]–[5]. The
broadcast case |S| = N is also called the minimum spanning
tree (MST) problem, and the unicast case |S| = 2 is also called
the shortest path problem. These 2 special cases can be solved
in time O(N2) [3], [4]. For more general S, the problem is
NP-hard and is not solved in polynomial time by any known
algorithms. The Steiner tree problem (1) is often used to model
wired networks where, for example, the cost dij represents the
time delay between nodes i and j, and d(T) is the total delay by
using the tree T .

B. Wireless Networks

Recently, there is increasing interest in constructions of trees
that minimize the energy consumption in wireless networks [1],
[2], [6]–[14]. While the cost (1) used in wired networks is the
sum of link costs, we will see later in (4) that the cost used in
wireless networks is the sum of maximum link costs. Suppose
first that we have a simple 4-node wireless network (Fig. 1),
where the source node m wants to send a message directly (i.e.,
without relaying) to 3 destination nodes i, j, and k. We can
model this communication by a tree T spanning these 4 nodes.
For the tree T in Fig. 1, the total RF transmission power of node
m is

Pm = max(pmi, pmj , pmk). (2)

We assume here that the nodes use omnidirectional antennas,
pij = bra

ij , where rij is the distance between nodes i and j,

Fig. 1. Using an omnidirectional antenna, node m transmits with power
Pm = max(pmi, pmj , pmk).

Fig. 2. A tree spanning 10 nodes (source node = 1).

a ≥ 2 is a constant dependent on the wireless medium, and
b is another constant (here we set b = 1). Our model mainly
consists of only RF transmission power. However, as shown
later in Fig. 4, the impact of signal-processing power can also
be incorporated into the model. In practice, node transmission
power is bounded by Pmin ≤ Pm ≤ Pmax. However, to allow
the algorithms to work over richer spaces, we do not impose
such limits, i.e., we let Pmin = 0 and Pmax = ∞. Using this
simple tree T (Fig. 1), node m can reach its destinations with
a single transmission, i.e., when m reaches the farthest node, it
also reaches all nearer nodes.

We now consider a tree T spanning a larger 10-node wireless
network (Fig. 2). The total transmission power of the tree T is
then the sum of the terms of the form (2):

power = max(p12, p13) + max(p34, p35, p36) + p57

+ max(p68, p69, p6,10). (3)

In general, for a given tree T spanning a subset of nodes in
a wireless network, its cost d(T) is defined as follows. First,
let RT be the set of nodes that have children (i.e., the set of
nonleaf nodes). For each node i in RT , let CT (i) be the set of
all children of i. We then define

d(T) =
∑

i∈RT

max{dij : j ∈ CT (i)} (4)

where dij = pij = ra
ij . Two algorithms are proposed in [14]

for the minimum-energy wireless broadcast problem. The first
is based on the familiar MST algorithm, which has computa-
tional complexity O(N2) and is originally developed for cost
functions that are appropriate for wired networks [3], [4]. A
novel approach is the broadcast incremental power (BIP) algo-
rithm, which incorporates the wireless characteristics into the
tree construction and outperforms the MST algorithm, but at the
expense of higher complexity O(N3). Design and simulation
performance of these algorithms are provided in [14]. Analyti-
cal studies of various aspects of MST and BIP are presented in
[9] and [13]. With the exception of the unicast case |S| = 2,

NGUYEN: GENERAL ALGORITHMS FOR CONSTRUCTION OF BROADCAST AND... 3

which can be solved by Dijkstra’s algorithm in time O(N2),
polynomial-time algorithms are not available for finding trees
that minimize the cost (4) in wireless networks, even for the
special broadcast case |S| = N . In fact, recently several authors
independently show that the minimum-energy broadcast wire-
less problem (4) is NP-hard, in addition to their development of
newer broadcast algorithms for the same wireless problem [6]–
[11].

III. GENERAL TREE-CONSTRUCTION
ALGORITHMS

In this section, we first present a general algorithm for con-
structing broadcasting trees that include all N nodes of the net-
work. We then modify the broadcasting algorithm to yield a
multicasting algorithm for constructing trees that include only a
subset of the network nodes. Here we assume that for a given
tree T , we can evaluate a cost d(T) ≥ 0 (no other restrictions
are imposed on the cost function).

Before presenting the general broadcast algorithm, we need
some preliminary ideas. Let Tk−1 be a tree rooted at source
s and has k − 1 nodes. Note that each non-source node has a
unique parent (the source node has no parent). In fact, the tree
Tk−1 is specified by the vector (Ai, i �= s), where Ai denotes
the parent of node i, i.e., if z = Ai, then node z is the parent
of node i. Thus, by changing the parents of some nodes of a
tree, we can transform it into another tree. Now let i be a node
of Tk−1 and j be another node such that i is not a descendant
of j. Here j may or may not be a node of Tk−1. We then let
i be the new parent of j, i.e., we set Aj = i (i.e., if j has an
old parent x, then x is replaced by i). The result is a new tree
Tk that is connected (because i ∈ Tk−1) and loop-free (because
previously i is not a descendant of j). We then say that the tree
Tk is derived from the tree Tk−1 and the link L = (i, j). Note
that if j is not a node of Tk−1, then Tk includes j as the new
node, i.e., Tk now has k nodes. If j is a node of Tk−1, then
Tk still has k − 1 nodes as Tk−1 does (however, the 2 trees are
different). For wireless networks, when we say that i becomes
the new parent of j, it also means that node i adjusts its power
to reach node j. Due to the wireless medium, any node m with
pim ≤ pij also receives this power. Thus, we also let i be the
parent of m, i.e., Am = i, provided that i is not a descendant
of m. Thus, i can now be the parent of both j and m. Note
also that m may or may not be a node of Tk−1. In summary, as
long as not all the nodes are already included in Tk−1, we can
choose a link L = (i, j), where i ∈ Tk−1, such that the new tree
Tk, which is derived from Tk−1 and L, includes at least one new
node (which can be j and/or m).

The following general algorithms are intended for the cost
function d(·), which can be of any form. In Section IV, we will
apply these algorithms to specific costs such as (1) and (4) of
Section II, as well as (7) and (11) of Section IV.
Algorithm B: A node is added to the tree at each step of the al-
gorithm. The tree is initialized as T1 = {source node}. Suppose
that during step (k − 1), a tree Tk−1 consisting of k − 1 nodes
is constructed (k ≤ N). At step k, we decide which new node
j will be added next. Let L be a link that starts from a node of
Tk−1. Let Tk be the new tree that is derived from Tk−1 and L.

The criterion is that the tree Tk includes j and has the least total
cost d(Tk). Because there are N nodes, the algorithm will end
after N steps, and TN is the final broadcast tree.
Remark 1. (a) In general, a tree-construction algorithm requires
some input information such as the number of nodes, the identity
of the source node, or the distribution of nodes. The output of
the algorithm is a tree. In this paper, we consider the cost d(·)
as part of the input information. Thus, Algorithm B is viewed as
a single algorithm whose input consists of the cost function d(·)
as well as other conventional information (such as the number
of nodes, the identity of the source node, etc.). An alternative
viewpoint is to consider Algorithm B not as a single algorithm,
but rather a family of algorithms. Each member of this family is
indexed by a cost function d(·), i.e., each member of the family
is identified as Algorithm B(d). When Algorithm B is used with
a cost function d(·), it may be called Algorithm B(d). However,
this alternative viewpoint is not adopted in this paper, i.e., we
simply call Algorithm B, ignoring the cost d(·).
(b) Although the new tree Tk is obtained from the previous tree
Tk−1 and a link L, Tk−1 is not necessarily a subtree of Tk (be-
cause some links of Tk−1 may disappear when L is added).
Also, it may not be the case that d(Tk) ≥ d(Tk−1). Further, the
2 trees Tk−1 and Tk can be very different. When Algorithm B is
applied to the cost (4) for wireless networks, at each step of the
algorithm, node i (which is the parent of node j) is allowed to
transmit at a power level that is greater than pij = ra

ij , provided
that this will yield lower overall tree power. Thus, in all in-
stances, Algorithm B performs no worse than an algorithm that
produces star trees (in a star tree, all destinations are children of
the same source).
(c) Let Tk be a tree spanning k nodes (k ≤ N), and fk(d) be
the computational complexity of evaluating the quantity d(Tk).
Define f(d) = max{f1(d), · · · , fN (d)}. As an example, con-
sider the cost d(T) defined by (4), which is used in wireless
networks as the total transmission power of a tree T . Sup-
pose further that T spans N nodes. It can then be shown that
f(d) = fN (d) = O(N), i.e., f(d) is the computational com-
plexity of evaluating the total transmission power of a tree span-
ning N nodes. Similarly, it can also be shown that f(d) = O(N)
when the cost is defined by (1), which is used in wired networks.
(d) We use the following procedure for wired networks (see Re-
mark 1(e) below for wireless networks). During step k of Algo-
rithm B, we scan all possible links L = (i, j), where i ∈ Tk−1

and j /∈ Tk−1. There are O(N2) such links. Here j is a
new node, which is a test child of i. We then choose the link
L = (i, j) that yields the new tree Tk whose cost d(Tk) is mini-
mum. Computation of d(Tk) can be done in time fk(d), which is
bounded by f(d). Thus, the computational complexity for each
step, where one new node j is added into the tree list, is bounded
by O(N2)×f(d). Because there are at most N steps, the overall
complexity of Algorithm B is bounded by O(N3) × f(d).
(e) For wireless networks, the following procedure is used in Al-
gorithm B. When looking for a new node to be added into the
tree Tk−1 at step k, we scan all possible links L = (i, j), where
i ∈ Tk−1 and j �= i (here j may or may not belong to Tk−1).
There are at most N(N −1) = O(N2) such links. However, we
only keep the links (i, j) such that i is not a descendant of j. We
then let i be the new parent of j (i.e., if j has an old parent x,

4 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

then x is replaced by i). Thus, the new tree Tk (that includes j) is
connected and has no loop. When we say that i is the new parent
of j, it also means that node i adjusts its power to reach node j,
i.e., node i transmits to node j with power pij . Due to the broad-
cast wireless medium, any node m with pim ≤ pij will hear the
transmission of i. Thus, we also let i be the new parent of m,
provided that previously i is not a descendant of m. Note that m
may or may not belong to Tk−1. Then the new tree Tk (that in-
cludes j and m) is also connected and has no loop. In summary,
as long as not all the nodes are already included in Tk−1, we can
choose a link L = (i, j), where i ∈ Tk−1, such that the new
tree Tk, which is derived from Tk−1 and L, includes at least one
new node (which can be j and/or m). We then choose the link
L = (i, j) that yields the new tree Tk of minimum cost d(Tk).
Determining that node i is not a descendant of nodes j and m
can be done in time O(N). Evaluating the cost d(Tk) can be
done in time f(d). Thus, it takes time O(N) + f(d) to process
each link (i, j) (see also Remark 1(d) above). Then the compu-
tational complexity for each step, where at least one new node
is added into the tree list, is O(N2) × (O(N) + f(d)). Because
there are at most N steps, the overall complexity of Algorithm B
is bounded by O(N3) × (O(N) + f(d)).
(f) For wired networks, from Remark 1(d) above, Algorithm B
adds a single node into the tree at each step. However, from
Remark 1(e) above, for wireless networks, the algorithm may
add multiple new nodes at some steps.
(g) Algorithm B is a centralized algorithm, because it requires
the full network information such as the costs between all pairs
of nodes and the total tree cost at each step. A distributed version
is presented later in Section V-A.2.
Remark 2. We now use Algorithm B to construct a tree span-
ning a wired network. Suppose that the cost is defined by (1)
and |S| = N (the broadcast case). We will now show that
the resulting solution is the same as the optimal solution ob-
tained by Prim’s algorithm for constructing the MST [3, p. 523].
Here, the procedure of Remark 1(d) is used to incorporate a
new node into the tree at each step. Let Dn be the cost of the
link that is chosen at step n, n ≥ 2. Note that Dn = dij for
some link (i, j). At step 1, the tree contains only the source
node. Thus, we define D1 = 0. Then the tree cost at step k is
d(Tk) =

∑k
n=1 Dn. At step (k + 1), Algorithm B chooses a

new link (with link cost Dk+1) such that d(Tk+1) is minimized.
But d(Tk+1) = d(Tk) + Dk+1. Thus, minimizing d(Tk+1) is
equivalent to minimizing Dk+1, which is the procedure used in
Prim’s algorithm. In summary, when Algorithm B is applied
to a wired network that uses the cost (1), it yields the optimal
solution that is also obtained by Prim’s algorithm.

We now consider the multicast case. Let S be a subset of
{1, 2, · · · , N}, S is called a multicast group and has |S| group
members. Here we want to construct trees that include at least
all nodes in S. The basic idea, which follows the method used in
[5], [12], [15], and [16] for multicast algorithms, is to substitute
paths for links (links are used in broadcast algorithms) such that
the resulting structure is a tree (i.e., it is connected and has no
loop). Note that the following Algorithm M is similar to the
previous Algorithm B. The main difference is: Links L are used
in Algorithm B, but paths F (consisting of one or more links)
are used in Algorithm M.

AlgorithmM: A group member is added to the tree at each step
of the algorithm. The tree is initialized as T1 = {source node}.
Suppose that during step (k− 1), a tree Tk−1 is constructed and
has k−1 group members (k ≤ |S|). At step k, we decide which
new group member j will be added next. Let F be a path that
starts from a node of Tk−1. Let Tk be the tree that is derived
from Tk−1 and F . The criterion is that the tree Tk includes j
and has the least total cost d(Tk). Thus, at each step, the tree
will include a new group member. Because there are |S| group
members, the algorithm will end after |S| steps, and T|S| is the
final multicast tree.
Remark 3. (a) In parallel to Remark 1(d), we use the following
well-known procedure [12], [15]–[17] for wired networks (see
Remark 3(c) below for wireless networks). During step k, Al-
gorithm M scans all possible pairs (i, j), where i ∈ Tk−1 and
j ∈ S − Tk−1. There are at most O(N2) such pairs. Here i
and j are terminal nodes of the shortest path between i and j.
We then choose the pair (i, j) that yields the new tree Tk whose
cost d(Tk) is minimum. Computation of d(Tk) can be done in
time fk(d), which is bounded by f(d). Thus, the computational
complexity of each step, where a new group member is added
into the tree list, is bounded by O(N2) × f(d). Because there
are at most |S| steps, the overall complexity of Algorithm M is
bounded by O(N2) × f(d) × |S|.
(b) In general, paths used in Algorithm M are not necessarily
the shortest paths (e.g., obtained from the Dijkstra or Bellman-
Ford algorithms). For example, Algorithm M may use paths
that are derived from the shortest paths as follows. Let Fij be
the shortest path from node i to node j, which can be written
as Fij = (i1, i2, · · · , iK). This shortest path contains K nodes
i1, i2, · · · , iK , with i1 = i and iK = j. From Fij , we derive the
following K − 1 paths

F ik
ij = (i1, ik, ik+1, · · · , iK), 2 ≤ k ≤ K. (5)

Note that F j
ij = (i, j), and F i2

ij = Fij is the original shortest

path. Further, F ik
ij , 3 ≤ k ≤ K, are not the shortest paths from

i to j. Thus, when the paths (5) are used, the trees produced by
Algorithm M are always no worse than the star trees. For each
pair (i, j), the number of paths in (5) is bounded by N − 1 =
O(N).
(c) For wireless networks, the following procedure is used in Al-
gorithm M. At step k, when looking for a new group member to
be added into the tree Tk−1, we scan all possible paths Fn

ij that
are defined in (5), where i ∈ Tk−1 and j �= i (here j may or
may not belong to Tk−1). There are at most O(N3) such paths.
However, we keep only the valid paths, i.e., the paths that do not
include any upstream node of i (with respect to Tk−1). Invalid
paths are discarded. For each valid path Fn

ij , let Tk be the tree
that is obtained by joining Tk−1 and Fn

ij . Note that Tk−1 and Fn
ij

may intersect at nodes other than i. Let y be one of such inter-
secting nodes. Node y may have 2 possible parents: One parent
w from Tk−1, the other parent z from Fn

ij . Then, for the tree Tk,
we assign z to be the only parent of y. Thus, each non-source
node of Tk has exactly one parent. Also, Tk has no loop (be-
cause Fn

ij is a valid path) and is connected (because i ∈ Tk−1).
From definition (5), we can write Fn

ij = (i, n, · · · , j). Within
this path, i is the new parent of n, this also means that node i

NGUYEN: GENERAL ALGORITHMS FOR CONSTRUCTION OF BROADCAST AND... 5

adjusts its power to reach node n, i.e., node i transmits to node
n with power pin. Due to the broadcast wireless medium, any
node m with pim ≤ pin will hear the transmission of i. Thus,
we also let i be the new parent of m, provided that previously
i is not a descendant of m. Note that m may or may not be-
long to S − Tk−1. Then the new tree Tk that includes j (and/or
m) is also connected and has no loop. In summary, as long as
not all the group members are already included in Tk−1, we can
choose a path Fn

ij , where i ∈ Tk−1, such that the new tree Tk,
which is derived from Tk−1 and Fn

ij , includes at least one new
group member (i.e., j and/or m). We then choose the path Fn

ij

that yields the new tree Tk of minimum cost d(Tk). Determin-
ing that the path Fn

ij is valid and that node i is not a descendant
of m can be done in time O(N). Evaluating the cost d(Tk) can
be done in time f(d). Thus, it takes time O(N) + f(d) to pro-
cess each path Fn

ij . Then the computational complexity for each
step, where at least one new group member is added into the
tree list, is O(N3)× (O(N) + f(d)). Because there are at most
|S| steps, the overall complexity of Algorithm M is bounded by
O(N3) × (O(N) + f(d)) × |S|.

IV. APPLICATIONS TO ENERGY-AWAREWIRELESS
NETWORKS

In this section, we apply Algorithms B and M, which can be
used for any cost functions, to broadcasting and multicasting in
energy-aware wireless networks. We will show that these algo-
rithms typically improve on some other algorithms (e.g., MST
and BIP). Some historical highlights and major design issues
for wireless networks are provided in [1], [14], and [18]–[20].
Our goal is to construct trees to support source-initiated ses-
sions in wireless multihop networks. Here we assume that the
wireless networks are static, i.e., the node locations are fixed.
As in [1], we consider the algorithms in several different con-
texts: Broadcasting, multicasting, signal-processing cost, omni-
directional antennas, directional antennas, as well as network
resources such as energy, transceivers, and frequencies. Our
models are more comprehensive than the models in [6]–[8], and
[10], which do not consider the issues associated with limited
energy, transceivers, and frequencies.

A. Broadcasting and Multicasting with Omnidirectional Anten-
nas

1) Broadcasting: Here we present algorithms for finding
energy-efficient broadcast trees with the use of omnidirectional
antennas. Recall that the power required to maintain a tree is
given by the cost function (4). In contrast to the problem with
the cost function (1), which can be solved in polynomial time,
the broadcast problem with the cost function (4) is NP-hard
[6], [8]–[11]. Thus, heuristic suboptimal polynomial-time al-
gorithms for the wireless network problem are desirable.

A simple heuristic is based on the MST algorithm. First, we
obtain the MST using the cost function (1), with dij = pij =
ra
ij , i.e., ignoring the cost definition (4) during the tree construc-

tion. After the MST is constructed, definition (4) is used to eval-
uate its cost. The 2nd algorithm is BIP [14]. The initial BIP tree
includes only the source node. At each step, one node is added

into the tree as follows. Consider a link (i, j), where i is a node
inside the tree and j is an outside node. The link (i, j) is added
into the tree if the incremental power dij − Pi is minimized,
where dij = pij = ra

ij and Pi is the transmitted power at node
i. BIP stops after the tree contains all the nodes. The 3rd algo-
rithm is Algorithm B when applied to the cost (4). At step k, a
new node j is added such that the tree Tk, which is derived from
Tk−1 and includes j, has the least total cost d(Tk), where d(·)
is the cost function defined by (4). Remark 1(e) describes Algo-
rithm B in detail. In summary, we have 3 heuristic algorithms
for the same broadcast wireless network problem with the cost
function (4): The MST algorithm, BIP, and Algorithm B (see
Fig. 12 in Section V for trees constructed by these algorithms).

In this paper, we use the method of [1] and [14] to evalu-
ate the performance of different algorithms (e.g., MST, BIP, and
Algorithm B) by comparing their absolute and normalized tree
costs (power). Specifically, we generate 100 different networks.
Each network has N nodes (one of which is a randomly cho-
sen source) that are located randomly in the same 5 × 5 square
region.

We then run these algorithms on each of the 100 networks.
Thus, we can obtain 100 absolute tree power values for each
algorithm (one value for each network). The normalized tree
power of an algorithm is defined as the absolute tree power (ob-
tained by this particular algorithm) divided by the least power
(obtained among these algorithms). Thus, for a given network,
the normalized power of the best algorithm (among these algo-
rithms) will be 1.0. There are 100 normalized tree power val-
ues for each algorithm (one value for each network). Next, we
compute the average of these absolute tree power values and
the average of normalized tree power values. In addition to the
absolute and normalized power values, we also compute their
variances. For small networks (e.g., N = 10) we can find the
optimal trees using the OPT algorithm (by exhaustive search).
For larger networks (e.g., N = 100), it is not feasible to find the
optimal trees due to the high complexity of this NP-hard prob-
lem.

The performance of the 4 algorithms MST, BIP, Algorithm B,
and OPT for N = 10 is shown in Fig. 3(a), both with and with-
out the use of the sweep operation [14]. The purpose of the
sweep operation is to discover and reduce redundant transmis-
sion power at some nodes. Thus, the overall tree power is of-
ten reduced. When a = 2, the sweep yields about 8.6% and
6.2% absolute power reduction for MST and BIP, respectively,
while the absolute power reduction for Algorithm B is less than
0.3%. Thus, the sweep is more beneficial for MST and BIP
than for Algorithm B. We observe that better algorithms usually
receive less improvement from the sweep. Obviously, the opti-
mal trees cannot be improved by the sweep operation (or by any
other operations). Note that Algorithm B underperforms OPT
only slightly, i.e., less than 1.53% with or without the sweep
operation. Better performance is indicated by lower absolute
and normalized power. Clearly, BIP outperforms MST, and Al-
gorithm B outperforms BIP. With the sweep, the Algorithm B
trees consume about 8.8% and 17% less power than the BIP
and MST trees, respectively. When a = 4, the performance
difference among the algorithms is reduced, i.e., the difference
between the worst algorithm (MST) and the best (OPT) is only

6 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

Algo without sweep
operation

with sweep
operation

propagation loss exponent a = 2
MST 13.47 (15.69)

1.303 (0.054)
12.40 (13.41)
1.198 (0.045)

BIP 12.24 (12.53)
1.178 (0.025)

11.53 (11.96)
1.104 (0.015)

Algo B 10.63 (9.639)
1.015 (0.001)

10.60 (9.616)
1 .012 (0.001)

OPT 10.47 (9.380)
1.000 (0.000)

10.47 (9.380)
1.000 (0.000)

propagation loss exponent a = 4
MST 49.67 (1050)

1.095 (0.019)
47.40 (961.7)
1.046 (0.011)

BIP 48.40 (912.2)
1.070 (0.014)

46.52 (871.2)
1.023 (0.005)

Algo B 45.67 (841.4)
1.003 (0.000)

45.64 (841.1)
1.002 (0.000)

OPT 45.53 (838.4)
1.000 (0.000)

45.53 (838.4)
1.000 (0.000)

Algo without sweep
operation

with sweep
operation

propagation loss exponent a = 2
MST 12.24 (0.708)

1.231 (0.005)
11.53 (0.645)
1.165 (0.004)

BIP 11.48 (0.576)
1.154 (0.004)

10.81 (0.536)
1.093 (0.004)

Algo B 9.968 (0.547)
1.000 (0.000)

9.926 (0.558)
1 .001 (0.000)

propagation loss exponent a = 4
MST 3.480 (0.723)

1.073 (0.002)
3.352 (0.690)
1.040 (0.002)

BIP 3.397 (0.719)
1.046 (0.001)

3.284 (0.679)
1.018 (0.001)

Algo B 3.254 (0.698)
1.001 (0.000)

3.243 (0.700)
1.004 (0.000)

(a)

(b)

Fig. 3. Absolute and normalized broadcast tree power (and their vari-
ances): (a) N = 10 nodes, (b) N = 100 nodes.

about 4.1% (with the sweep operation).
The performance of the 3 algorithms MST, BIP, and Algo-

rithm B for N = 100 nodes is shown in Fig. 3(b). It is not
feasible to evaluate OPT in this case. Again, BIP outperforms
MST, and Algorithm B outperforms BIP. Without the sweep, the
Algorithm B trees consume about 15% and 23% less power than
the BIP and MST trees, respectively. The sweep yields about 6%
power reduction for both MST and BIP, while the power reduc-
tion for Algorithm B is only about 0.4%. With the sweep, the
Algorithm B trees consume about 9% and 16% less power than
the BIP and MST trees, respectively.

In summary, with or without the sweep operation, BIP out-
performs MST, and Algorithm B outperforms BIP. Because the
sweep operation is beneficial for most heuristic algorithms, we
will apply it to all algorithms considered in this paper. Finally,
we observe that the variances (of the absolute tree power val-

ues) when N = 10 are much greater than the variances when
N = 100. For example, when a = 2 and with the sweep, the
MST trees have variances 13.41 and 0.645 when N = 10 and
N = 100, respectively.

The better performance under Algorithm B can be explained
as follows. Recall that the goal is to construct trees that mini-
mize the target cost (4). In MST (or BIP), dij (or dij − Pi) is
minimized at each step, but neither of these quantities match the
target cost (4). In contrast, at each step, Algorithm B aims to
minimize the target cost (4) directly. Thus, it should perform
better. Algorithm B is also more complex because it is based on
a “global” measure, i.e., the global tree cost (4) is evaluated at
each step. In contrast, the MST algorithm and BIP are based on
a “local” measure such as dij or dij − Pi. Thus, they are less
complex.
Remark 4. From Remark 1(e), the complexity of Algorithm B
is O(N3) × (O(N) + f(d)), where f(d) is the computational
complexity of evaluating the power of a tree that spans N
nodes. For the case of omnidirectional antennas, it can be shown
that f(d) = O(N). Thus, the complexity of Algorithm B is
O(N3) × (O(N) + O(N)) = O(N4). Recall that the com-
putational complexity of MST and BIP is O(N2) and O(N3),
respectively. Thus, among the 3 broadcasting algorithms con-
sidered here, the best performing algorithm is also the most
complex one, and the weakest performing algorithm is also the
simplest one.

So far we consider only the RF power and ignore the signal-
processing cost. As shown in [1], it is straightforward to in-
corporate the impact of signal-processing power into the tree-
construction algorithms. Let us revisit Fig. 1, where node m
transmits with the RF power Pm = max(pmi, pmj , pmk). The
processing power can be incorporated into the algorithms as fol-
lows. First, let pT

n and pR
n be the transmission and reception pro-

cessing power at node n, respectively. In Fig. 1, we have pR
m = 0

(because the source node m does not receive) and pT
i = pT

j =
pT

k = 0 (because the leaf nodes i, j, and k do not transmit). Then
the total power cost (RF power plus processing power) used by
the tree in Fig. 1 is P ∗ = Pm +pT

m +pR
i +pR

j +pR
k . For a more

general network, the total power cost is defined by

d∗(T) = d(T) +
∑

n

(pT
n + pR

n)

where d(T) is the RF power cost defined by (4). Note that pR
n =

0 if n is the source node, and pT
n = 0 if n is a leaf node.

BIP can now be extended to include the processing power as
follows [1]. At each step of the extended BIP, we add the link
(i, j) into the current tree if P ∗

ij −P ∗
i is minimized, where P ∗

i is
the total power at node i of the current tree, and P ∗

ij is the total
power after the link (i, j) is added into the current tree. Algo-
rithm B is applicable to any cost functions. We now apply it to
the cost d∗(T) above. The performance of BIP and Algorithm B
for different combinations of processing power values is shown
in Fig. 4 for N = 100, where we let pT

n = pT and pR
n = pR

for all nodes n that have nonzero processing power. As noted
previously, the sweep operation is also used here. As expected,
the total tree power increases with the addition of the processing
cost. For example, when a = 2, the absolute tree power under
Algorithm B increases from 9.926 (Fig. 3(b), pT = pR = 0) to

NGUYEN: GENERAL ALGORITHMS FOR CONSTRUCTION OF BROADCAST AND... 7

p T P R BIP Algo B
propagation loss exponent a = 2

0.01 0.01 12.37 (0.517)
1.100 (0.004)

11.28 (0.646)
1.001 (0.000)

0.1 0.1 24.88 (1.028)
1.126 (0.003)

22.14 (1.229)
1.000 (0.000)

0.01 0.1 21.28 (0.517)
1.054 (0.001)

20.22 (0.639)
1.000 (0.000)

0.1 0.0 1 15.97 (1.028)
1.218 (0.009)

13.18 (1.419)
1.000 (0.000)

propagation loss exponent a = 4
0.01 0.01 4.926 (0.668)

1.014 (0.000)
4.872 (0.680)
1.003 (0.000)

0.1 0.1 18.48 (0.675)
1.021 (0.000)

18.11 (0.717)
1.001 (0.000)

0.01 0.1 13.84 (0.668)
1.005 (0. 000)

13.78 (0.680)
1.001 (0.000)

0.1 0.01 9.568 (0.675)
1.044 (0.001)

9.180 (0.701)
1.001 (0.000)

Fig. 4. Absolute and normalized broadcast tree power (and their vari-
ances) with nonzero processing power pT and pR (N = 100).

11.28 (Fig. 4, pT = pR = 0.01). Again, Algorithm B outper-
forms BIP in all cases. For the rest of this paper, we consider
only the RF power.

2) Multicasting: In Section IV-A.1 we present algorithms for
finding energy-efficient broadcast trees with the use of omnidi-
rectional antennas. The power of a given tree is the cost (4). We
now wish to construct multicast trees that include the nodes of
a multicast group S. The previous broadcast algorithms can be
modified to yield multicast algorithms. A simple method is to
prune broadcast trees (i.e., to eliminate any link that does not
lead to a group member) to produce multicast trees. For ex-
ample, we can prune the broadcast BIP trees to yield multicast
trees called the multicast incremental power (MIP) trees [14].
As seen later (Fig. 5), the pruning method does not work well,
unless the multicast groups are large.

A better method, which is used in [12], [15], and [16] for
heuristic multicast algorithms, is to incorporate the shortest
paths into the tree construction. First, let Fij be the shortest
path between nodes i and j. A generalization of the MST algo-
rithm, which is based on the well-known algorithm of [15], for
constructing multicast trees works as follows. The initial tree
includes only the source node. At each step, one group mem-
ber is added into the tree according to the following rule. Let i
be a node inside the tree and j be a group member outside the
tree. We then add the path Fij into the tree if d(Fij) is mini-
mized. The algorithm stops when the tree contains all the group
members. This algorithm, called the shortest path first (SPF), is
proposed in [12] for multicasting in wireless networks.

The next algorithm, which is called the incremental shortest
path first (ISPF) and has some features of both BIP and SPF,
works as follows. Again, the initial tree includes only the source
node. Let i be a node inside the tree and j be a group member
outside the tree. At each step, we add the path Fij into the tree
if d(Fij)−Pi is minimized (recall that dij −Pi is minimized in
BIP). The algorithm stops when the tree contains all the group
members. Another algorithm is Algorithm M. At step k, Al-
gorithm M forms a new tree Tk by joining a path Fn

ij to the

1

1.1

1.2

1.3

0 20 40 60 80 100

av
er

ag
e

no
rm

al
iz

ed
 tr

ee
 p

ow
er

group size

Algorithm M

ISPF

SPF

MIP

Fig. 5. Performance of multicast algorithms (N = 100, a = 2).

tree Tk−1 such that Tk includes at least one new group mem-
ber. Then the tree Tk is chosen if the cost d(Tk) is minimized.
Remark 3(c) describes Algorithm M in detail.

We now compare the performance of the 4 multicast algo-
rithms: MIP, SPF, ISPF, and Algorithm M. We evaluate the per-
formance for different group sizes, which vary from 2 to N .
Group size of 2 corresponds to the unicast case where a source
is to reach a single destination. Group size of N corresponds
to the broadcast case where a source is to reach all N − 1 des-
tinations. Here, the performance is the average of normalized
tree power values over many random networks. Specifically,
for each multicast group size, we compute the average normal-
ized tree power for an algorithm as follows. First, we gener-
ate 100 random networks W1, · · · ,W100. Each network has N
nodes that are located randomly in the same 5 × 5 square re-
gion. Consider a group size |S|. We then generate 100 random
multicast groups GS

1 , · · · , GS
100 (group GS

i is generated for net-
work Wi). Each group is required to have the same size |S|, i.e.,
|GS

i | = |S|. Next, we run the 4 multicast algorithms for each
network-group pair (Wi, G

S
i). For each algorithm, we compute

the normalized power values for each pair (Wi, G
S
i), and then

compute the average of these values over the 100 networks.
Let N = 100. In Fig. 5, we plot the average normalized

power as function of group size |S| = 2, 10, 20, · · · , 90, 100.
When |S| = 2, the 3 algorithms other than MIP produce identi-
cal optimal results because they all find the same shortest paths.
Fig. 5 shows that ISPF outperforms SPF, and Algorithm M out-
performs ISPF for all considered multicast group sizes. As ex-
pected, MIP (the pruning algorithm) performs worst for smaller
multicast groups (with 40 group members or less). However,
MIP outperforms both SPF and ISPF for larger multicast groups
(with 80 group members or more). It is important to note that
when the multicast group includes all the nodes (i.e., the broad-
cast case), the SPF algorithm produces the MSTs, i.e., the SPF
algorithm is a generalization of the MST algorithm [12], [15].
However, as evidenced from Fig. 5, ISPF algorithm is not a
generalization of BIP. MIP is a generalization of BIP. Another
generalization of BIP called the minimum incremental path first
(MIPF) is proposed in [12]. ISPF is a slight variation of MIPF.

Using the technique of [15], both SPF and ISPF have compu-
tational complexity O(N3), where N is the number of nodes. A

8 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

1

1.05

1.1

1.15

1.2

0 20 40 60 80 100

av
er

ag
e

no
rm

al
iz

ed
 tr

ee
 p

ow
er

group size

Algorithm M
SPF ISPF

MIP

Fig. 6. Performance of multicast algorithms (N = 100, a = 4).

faster implementation of SPF is given in [17], which has com-
plexity O(N2).The complexity of MIP is O(N3) [14]. From
Remark 3(c), for a multicast group S, the complexity of Algo-
rithm M is bounded by O(N3) × (O(N) + f(d)) × |S|, where
f(d) is the computational complexity of evaluating the power of
a tree that spans N nodes. For the case of omnidirectional anten-
nas, it can be shown that f(d) = O(N). Thus, the complexity
of Algorithm M is bounded by O(N4) × |S|.

Simulation results shown in Fig. 5 are for the propagation loss
exponent a = 2. Fig. 6 shows simulation results for a = 4. The
relative performance among the algorithms is similar to Fig. 5.
However, the performance difference among the algorithms is
now reduced. For the rest of this paper, we focus on the case
a = 2.

B. Broadcasting and Multicasting with Directional Antennas

In Section IV-A, we present tree-construction algorithms for
energy-aware wireless networks that use ominidirectional anten-
nas (see (2)–(4)). We now turn our attention to networks that use
directional antennas. Refer to Fig. 1, where node m transmits to
nodes i, j, and k, using an omnidirectional antenna. The re-
sulting power is given by (2). Suppose now that the same node
m uses a directional antenna to transmit to nodes i, j, and k as
shown in Fig. 7, where A is the angle (beamwidth) that covers
the nodes i, j, and k. Then the RF transmission power of node
m is

Pm(A) =
A

360
max(pmi, pmj , pmk). (6)

In (6), we use an idealized model so that all of the transmit-
ted energy is concentrated uniformly in the chosen beamwidth
[1]. Within a multicast tree, to conserve the transmission energy,
we assume that each transmitting node chooses the minimum
beamwidth A to cover its children, such that 0 < Amin ≤ A ≤
Amax ≤ 360 [1]. In this paper, we set Amax = 360. For net-
works equipped with ominidirectional antennas, the beamwidth
A is always 360 degrees, i.e., Amin = Amax = 360. Thus, with
proper design, networks equipped with directional antennas use
less RF energy than those equipped with omnidirectional anten-
nas. For a more general tree T (such as the tree in Fig. 2), with
the use of directional antennas, the total tree power (which is

Fig. 7. Using a directional antenna, node m transmits with power
Pm(A) = (A/360) max(pmi, pmj , pmk).

1

1.03

1.06

1.09

1.12

0 90 180 270 360

av
er

ag
e

no
rm

al
iz

ed
 tr

ee
 p

ow
er

minimum beamwidth (Amin)

Algorithm B

D-BIP

Fig. 8. Performance of broadcast algorithms (N = 100, a = 2).

considered as a tree cost) is the sum of the terms of the form (6):

d(T) =
∑

m∈T

Pm(Am) (7)

where Am is the antenna beamwidth at node m, and Pm(Am) is
the transmission power at node m, which has the form (6). Note
that Pm(Am) = 0 if m is a leaf node.

A number of heuristic tree-construction algorithms that ex-
ploit directional antennas are proposed in [1]: Directional BIP
(D-BIP) and directional MIP (D-MIP) for broadcasting and mul-
ticasting, respectively. D-MIP trees are D-BIP trees that are
pruned. Recall that Algorithms B and M presented in Section III
are for constructing broadcast and multicast trees with an arbi-
trary cost function d(·). We now use the cost function d(T)
defined by (7) in these general algorithms to yield directional-
antenna versions of Algorithms B and M. In summary, we have
2 algorithms for constructing broadcast trees (D-BIP and Algo-
rithm B applied to the cost (7)) and 2 algorithms for construct-
ing multicast trees (D-MIP and Algorithm M applied to the cost
(7)). The performance of these algorithms is shown in Fig. 8 (for
broadcasting) and Fig. 9 (for multicasting). Clearly, Algorithms
B and M outperform D-BIP and D-MIP, respectively, i.e., trees
under Algorithms B and M typically use less power than trees
under D-BIP and D-MIP.

The complexity of D-BIP and D-MIP is bounded by
O(N3 log N) [1]. From Remark 1(e), the complexity of Algo-
rithm B is bounded by O(N3) × (O(N) + f(d)), where f(d)
is the computational complexity of evaluating the power of a
tree that spans N nodes. For the case of directional anten-
nas, it can be shown that f(d) ≤ O(N log N) [1]. Thus, the
complexity of Algorithm B is bounded by O(N4 log N). From
Remark 3(c), for a multicast group S, the complexity of Algo-
rithm M is bounded by O(N3) × (O(N) + f(d)) × |S|, where

NGUYEN: GENERAL ALGORITHMS FOR CONSTRUCTION OF BROADCAST AND... 9

Fig. 9. Performance of multicast algorithms (N = 100, a = 2): (a)
Amin = 30, (b) Amin = 90, (c) Amin = 180.

f(d) ≤ O(N log N). Thus, the complexity of Algorithm M is
bounded by O(N4 log N) × |S|.

C. Multicasting with Energy Limitations

We now consider algorithms for energy-limitation operation,
i.e., each network node is equipped with a fixed quantity of en-
ergy that cannot be renewed during network operation. Node
energy is reduced after a transmission to support a multicast ses-
sion. After supporting many sessions, a node dies (i.e., it is no

longer able to transmit or receive messages) when its energy
falls below a low level. Let Ei(0) be the initial energy allocated
to node i, and let Ei(t) be its residual energy at time t. When
node i transmits with power P for the time duration D to sup-
port a multicast session, it expends the amount of energy PD.
We have Ei(t2) ≤ Ei(t1) when t1 < t2. Node i dies at time t
when Ei(t) ≈ 0, and no further communication to or from node
i is possible.

Here, an appropriate performance measure is the total traffic
volume the network can deliver [1]. Assume that the wireless
network has N nodes, which are randomly located in a region
with dimensions 5 × 5. We simulate multicast session requests
that arrive into the network according to exponential interar-
rival times with unit mean. Session durations are also exponen-
tially distributed with unit mean. Each session forms a multicast
group, which consists of a source and a number of destinations.
The group size is uniformly distributed between 2 and N , and
a source is chosen randomly among the group members. The
total network traffic delivered to all reached destinations for X
multicast sessions is

BX =
X∑

s=1

bs (8)

where bs is the traffic delivered to reached destinations in ses-
sion s, which is defined to be the product of the session duration
and the number of reached destinations of the session [1]. We
assume that sufficient transceivers and frequency resources are
available to support all session requests. We then run the simu-
lation until no additional traffic can be delivered.

Our goal is to construct multicast trees to support session re-
quests such that the total delivered traffic BX is maximized for
a given value of initial energy at each network node. Heuris-
tic suboptimal algorithms are needed because the optimal al-
gorithms are complex. For the energy-limitation operation, the
incremental power dij −Pi used in the original MIP is modified
to become [1]

(dij − Pi)
Ei(0)
Ei(t)

(9)

where Pi is the transmitted power at node i, and dij = pij = ra
ij .

Thus, using the energy-limitation version of MIP, we add the
link (i, j) into the tree at each step if the incremental cost (9) is
minimized.

Note that the cost (4) (as well as the cost (7)), which is the
total power of a tree T , can be written as

d(T) =
∑

i∈T

Pi (10)

where Pi is the transmitted power at node i, and Pi = 0 if i is
a leaf node of T . For the energy-limitation operation, we now
define a new cost function for a tree T

d(T) =
∑

i∈T

Pi
Ei(0)
Ei(t)

(11)

which is derived from (10) by multiplying the summands by
Ei(0)/Ei(t). Because any cost functions can be used in Al-
gorithm M, so can the cost function (11). Thus, for the energy-
limitation operation, the cost (11) is now used in Algorithm M.

10 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

0

50000

100000

150000

200000

0 2000 4000 6000 8000 10000

de
liv

er
ed

 tr
af

fic
 (

B
X
)

number of arrivals (X)

MIP

Algorithm M

Algorithm M

D-MIP

Amin = 30

Amin = 360

Amin = 90
Algorithm M

D-MIP

Fig. 10. Delivered traffic under D-MIP and Algorithm M (N = 50, a = 2).

The performance of D-MIP and Algorithm M is shown in
Fig. 10 (D-MIP becomes MIP when Amin = 360). Here,
the network has N = 50 nodes, the number of arrivals is
X = 10,000, and each network node is allocated the same ini-
tial energy Ei(0) = 200. The performance is shown for om-
nidirectional antennas (Amin = 360) and directional antennas
(Amin = 30 and 90). As expected, Algorithm M outperforms
D-MIP. Specifically, the delivered traffic under Algorithm M is
11% (Amin = 360), 12% (Amin = 90), and 26% (Amin = 30)
more than the delivered traffic under D-MIP. Algorithm M also
outperforms MIP in terms of network lifetime (i.e., the time
when the 1st node in the network dies due to energy depletion).
In particular, when Amin = 360, the network lifetime is 828.2
and 638.5 under Algorithm M and MIP, respectively. Thus, Al-
gorithm M extends the network lifetime by about 30%.

1) Impact of finite transceiver and frequency resources: Re-
call that trees are used to support multicast sessions. Each par-
ticipating node of a session needs a transceiver and a suitable
frequency. When the transceiver-frequency resource is not avail-
able, the affected nodes are blocked. So far we assume the avail-
ability of an unlimited number of transceivers and frequencies,
which are always available for each session request. The perfor-
mance under such assumption is shown in Fig. 10.

We now make the more realistic assumption that the num-
ber of transceivers and frequencies is limited. Following [1],
we use the following greedy method for dealing with the limi-
tation of resources. Suppose that a new session request arrives.
To support this new session, we consider only nodes that have
available transceivers. We then use an algorithm (such as MIP
or Algorithm M) to construct an initial multicast tree Tinit with
the assumption of unlimited number of frequencies. Next, we
attempt to assign the finite number of frequencies to the nodes
of Tinit. If a frequency g is used by node i for transmitting to
node j, then we say that g is the transmitting frequency of node
i, and g is the receiving frequency of node j. Suppose now that
node n wants to choose a noninterfering frequency f to trans-
mit. The frequency f is noninterfering if (a) there is no any other
node that is inside the beamwidth of n and whose receiving fre-
quency is f , and (b) if n is also a receiving node, its receiving
frequency is different from f , i.e., the same frequency cannot be
used for transmission and reception by a node at the same time.

0

20000

40000

60000

80000

100000

0 2000 4000 6000 8000 10000

de
liv

er
ed

 tr
af

fic
 (

B
X
)

number of arrivals (X)

MIP

Algorithm M

Algorithm M

D-MIP

Amin = 90

Amin = 360

Fig. 11. Delivered traffic under D-MIP and Algorithm M (N = 50, a = 2,
2 transceivers, 4 frequencies).

We use the following greedy procedure to assign noninterfer-
ing frequencies to transmitting nodes (non-transmitting nodes or
leaf nodes do not need transmitting frequencies). First, we try to
assign a noninterfering frequency to the source of the initial tree
Tinit. If this fails, the multicast session is blocked. If a noninter-
fering frequency is successfully assigned to the source, then we
apply the frequency-assignment procedure to its transmitting de-
scendants (as defined by Tinit). At each assignment, we choose
the lowest-numbered available noninterfering frequency. When
no such frequency is available for a node, the frequency assign-
ment fails at this node. Then this node and all of its descendants
are pruned from the initial tree Tinit.

To implement this frequency-assignment procedure, we con-
struct a list of nodes. At each step of the procedure, we try to
assign a noninterfering frequency to a node in this list. Initially,
the list contains only the source node of Tinit. As described in
the following, the size of this list can change after each step.
After a node is assigned a noninterfering frequency, this node is
deleted from the list, and then all of its transmitting children are
added to the list. When a node cannot be assigned a noninter-
fering frequency, it is also deleted from the list. Thus, after one
step, exactly one node is permanently deleted from the list, i.e.,
this node is never reconsidered at later steps. In our implemen-
tation, at each step, we try to assign a noninterfering frequency
to the lowest-numbered node from the list. Note that this fre-
quency assignment is greedy and suboptimal, because there is
no backtracking to revisit a node that could not be assigned a
noninterfering frequency at a previous step, or to revise a pre-
vious frequency assignment. The frequency-assignment proce-
dure ends when the list is empty.

The result is a tree (which is a subtree of the initial tree Tinit)
such that frequencies and transceivers are assigned to its nodes.
Transceivers and frequencies are dedicated to a particular ses-
sion (multicast tree) throughout its duration. Upon completion
of a session, these resources are immediately released and be-
come available for future sessions. Let us return to the model
of Fig. 10. However, we now let the number of transceivers
at each node be 2, and let the number of frequencies available
to the network be 4. Fig. 11 compares the delivered traffic of
D-MIP and Algorithm M. Again, Algorithm M outperforms D-
MIP, i.e., Algorithm M delivers about 9% (Amin = 90) and 12%

NGUYEN: GENERAL ALGORITHMS FOR CONSTRUCTION OF BROADCAST AND... 11

(Amin = 360) more traffic than D-MIP.

V. ALGORITHMSWITH LOWER COMPLEXITY

From Section IV, the general Algorithms B and M outperform
some other algorithms at the cost of higher computational com-
plexity. In particular, the complexity of Algorithm B is O(N4),
while that of MST and BIP is O(N2) and O(N3), respectively
(Remark 4). We will now show that our general algorithms can
be adapted to yield 2 algorithms that have lower complexity but
underperform only slightly. One algorithm is a distributed ver-
sion of Algorithm B, the other is a centralized one. Here we
reconsider the problem posed in Section IV-A.1, i.e., we wish to
find energy-efficient broadcast trees with the use of omnidirec-
tional antennas. These lower complexity versions can also be
used to produce multicast trees (see Remark 7 later). In this sec-
tion, we show the effectiveness of these lower complexity algo-
rithms in connection with the cost (4) used in wireless networks.
However, these algorithms are also general and applicable to any
cost functions.

A. Algorithm B1

Our basic idea is to divide the N nodes into smaller subsets,
each subset has a local source. We then apply Algorithm B to
these subsets to form subtrees, which are then joined to form the
final global tree. Before presenting the algorithm, we need some
definitions. Let T be a tree that spans N nodes and has source
s. Each node i of this tree is assigned a level Li as follows. The
level of the source node is 0, i.e., Ls = 0. If i is a node of level
Li, then all of its children have level Li + 1, and its parent has
level Li − 1 (if i �= s). Thus, all children of the source s have
level 1, and all of its grandchildren have level 2, and so on. Note
that 0 ≤ Li ≤ N − 1.
Algorithm B1: This algorithm is used to construct a broadcast
tree that spans a network of N nodes and is rooted at source s.
Let H be an integer such that 1 ≤ H ≤ N . The algorithm has
2 phases. In phase 1, a planar Euclidean MST that spans the
entire network of N nodes is constructed and is rooted at the
global source s. For each node i of this MST, let Li be its level.
A node n becomes a local source when Ln is a multiple of H .
For each local source n, let Zn(H) = {i : Ln ≤ Li ≤ Ln+H}.
Note that n ∈ Zn(H). In phase 2, we apply Algorithm B to the
nodes of Zn(H) with n as the (local) source node. The result is
a subtree that is rooted at n and spans all the nodes in Zn(H).
From our construction, when n �= s, the local source n is a leaf
node of another subtree that spans some subset Zm(H),m �= n.
Thus, all these subtrees collectively form a single global tree
that is connected and is loop-free.

As an example, consider a network of N = 20 nodes. The
MST constructed from this network is shown in Fig. 12(a). Here
the global source node is s = 13. Let H = 3. Consider node
17 of level L17 = 6, which is a multiple of H = 3. Thus, 17
is a local source, and Z17(3) = {i : 6 ≤ Li ≤ 9}. Because
L18 = 8, we have 18 ∈ Z17(3). It can be shown that nodes 2
and 16 also belong to Z17(3). Thus, Z17(3) = {2, 16, 17, 18}.
Similarly, it can be shown that nodes 5, 10, 13, 14, and 16 are
also local sources, and their subsets Zn(3) can be easily deter-
mined. These local sources are shown in Fig. 12(a) by larger

Fig. 12. Trees under different algorithms: (a) MST (power = 12.28), (b)
Algorithm B1 with H = 3 (power = 9.936), (c) Algorithm B (power =
8.326), (d) BIP (power = 10.1).

black dots. We then run Algorithm B on each of these subsets
(e.g., applying Algorithm B to the subset Z17(3) with 17 as the
source node) to yield the subtrees shown in Fig. 12(b). The fi-
nal global tree is the union of these subtrees (Fig. 12(b)). Un-
der Algorithm B1, the total tree power is 9.936 when H = 3.
With the lower H = 2, the power increases to 10.05. With the
higher H = 4, the power decreases to 8.633. Further, if we
set H ≥ 8, the power becomes 8.326, which is the same as the
power produced by Algorithm B (Fig. 12(c)). Note that the MST
is produced when H = 1. Thus, at one extreme (H = 1), Algo-
rithm B1 produces the MST, while at the other extreme (H ≥ 8),
Algorithm B1 becomes Algorithm B. Thus, the performance and
complexity of Algorithm B1 are somewhere between those of
the MST algorithm and Algorithm B. For comparison, the BIP
tree for the same network is shown in Fig. 12(d). Note that,
for simple illustration, the sweep operation is not applied to the
trees in this particular example. In summary, Algorithm B1 out-
performs both the MST and BIP when H ≥ 2 in this example.

Remark 5. (a) Because Ls = 0, which is a multiple of H , the
global source is also a local source. If n is both a local source
and a leaf node of the MST, then Zn(H) = {n}.

(b) Recall that 1 ≤ H ≤ N . Suppose that H = 1, then Li is
a multiple H for all i. Then all the nodes of the MST are local
sources, i.e., the number of local sources is N when H = 1.
Suppose that H = N , then Li cannot be a multiple of H when
i �= s, because 1 ≤ Li ≤ N − 1 when i �= s. Thus, the global
source s is the only local source when H = N (or when H is
greater than the maximum level of the MST). In general, it can
be shown that the number local sources increases (decreases)

12 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

when H decreases (increases). Thus, we can use H to control
the number of local sources. Also, smaller (larger) H yields
smaller (larger) Zn(H).
(c) One of the reasons why a planar Euclidean MST is chosen
to generate the subsets Zn(H) is the well-known fact that each
non-source node n of the MST has at most 5 children (the source
node s has at most 6 children). From this fact, we have

|Zs(1)| ≤ 7 and |Zn(1)| ≤ 6 (12)

for n �= s. Note that the upper bounds in (12) are constants
independent of N . The constant bounds may not hold for other
trees, e.g., BIP can produce a star tree, in which N −1 nodes are
children of the source node, i.e., |Zs(1)| = N . From (12), it can
be shown that for any given H , there exists a constant E such
that |Zn(H)| ≤ E for all n and N . Note that E depends only on
H and not on n or N . This property is used later to determine
the complexity of Algorithm B1.
(d) Let T now be the MST constructed in phase 1 of Algo-
rithm B1. So far a single H is used to divide the N nodes of
T into the subsets Zn(H). However, different subsets can be
constructed using different H’s. For example, consider a sub-
set Zn(H) with H > 1. This subset is spanned by a smaller
MST that is a subtree of T and is rooted at n. Let H1 < H
and M = |Zn(H)|. We can then consider n as the new
global source, and use H1 to divide the M nodes of the sub-
tree into L smaller subsets Zn1(H1), Zn2(H1), · · · , ZnL

(H1),
where n1, n2, · · · , nL are new local sources (for some L > 1).
Thus, any larger subset Zn(H) can be further divided into
smaller subsets to which Algorithm B can be applied. In sum-
mary, we can use multiple values Hj to divide the N nodes of
the MST into subsets Zni

(Hj).
(e) Algorithm B1 has 2 phases. In phase 1, the MST is used
to produce the subsets Zn(H), then in phase 2, Algorithm B
is applied to these subsets to form subtrees. However, Algo-
rithm B1 can be extended to allow other algorithms to be used
in either phases, e.g., BIP can be used in phase 2 (the MST is
used in phase 1 as before), or BIP can be used in phase 1 (and
Algorithm B is used in phase 2). Also, different algorithms can
be applied to different subsets. Some subsets can choose not
to participate in phase 2 (e.g., due to lack of computational re-
sources) and use the MST subtrees already computed in phase 1,
while other subsets (e.g., with enough computational resources)
can run more expensive algorithms (e.g., the optimal algorithm
OPT) to produce better subtrees.

1) Computational complexity: When Algorithm B is applied
to the N nodes, it has computational complexity O(N4). Un-
der Algorithm B1, the N nodes are divided into smaller subsets
to which Algorithm B is applied. In phase 1 of Algorithm B1,
the MST is constructed and then the subsets Zn(H) are deter-
mined. This phase can be done in time O(N2). Let us now
study the computational complexity of Algorithm B1 when N
is large. First, suppose that H is a small constant that is inde-
pendent of N (e.g., H ≤ 5). Then, by Remark 5(c), we have
|Zn(H)|4 ≤ K, for some constant K independent of N . When
Algorithm B is applied to each subset Zn(H), it has complex-
ity O(|Zn(H)|4) ≤ O(K), which is also a constant indepen-
dent of N . Because H is a small constant, by Remark 5(b),
the number of subsets is large, i.e., O(N). When Algorithm B

is applied to these O(N) subsets, the resulting complexity is
O(N)O(K) = O(N). Thus, the complexity of Algorithm B1 is
O(N2) + O(N) = O(N2) when H is a small constant. Next,
suppose that H is large. Then, by Remark 5(b), the number
of the subsets is small, i.e., O(1), and |Zn(H)| = O(N) for
some local source n. Then the complexity of Algorithm B1 is
O(N2)+ O(1)O(N4) = O(N4). In summary, we show that the
computational complexity of Algorithm B1 is between O(N2)
(when H is small) and O(N4) (when H is large) for large N .

2) Distributed implementation: A centralized algorithm (such
as BIP or Algorithm B) can be implemented as follows. In one
method, a designated node gathers the full network information,
then computes the tree, and finally forwards the tree to all other
nodes. In another method, every node gathers the full network
information. Then each node independently computes the de-
sired tree, i.e., there is no need to forward the computed tree
to other nodes. Thus, to implement a centralized algorithm, at
least one node must know the full network information. In the
following, we show that Algorithm B1 can be considered as a
distributed algorithm because each node needs to know infor-
mation about only other nodes that are H levels away (i.e., only
partial network information is needed).

First, in phase 1 of Algorithm B1, a distributed algorithm is
used to construct the MST [4, p. 391]. Then each node of the
MST determines its level as follows. If it is the (global) source
node, its level is 0. Each node learns its level from its parent’s
level, i.e., its level is its parent’s level plus 1. Further, a node
becomes a local source if its level is a multiple of H . We now
assume that each node knows information about its descendant
nodes that are within H levels from it. That is, each node n
only needs to know information about every node i that is a
descendant of n and Li ≤ Ln + H , i.e., node n knows only
partial network information. We have Ln < Li because i is a
descendant of n. Thus, each node n knows all the nodes in {i :
Ln ≤ Li ≤ Ln +H}, which is Zn(H) if n is also a local source
node. In summary, each local source node n knows information
about the nodes in the subset Zn(H). It then runs Algorithm B
on Zn(H) to compute a subtree that is then forwarded to all
other nodes in Zn(H). Note that each local source can compute
its own subtree concurrently and independently from other local
sources. Finally, the resulting subtrees are automatically joined
at appropriate local sources to produce the final global tree that
is connected and loop-free.

3) Performance evaluation: Algorithm B1 is a lower com-
plexity and distributed version of Algorithm B (for small H).
Algorithm B2, to be discussed later, is also a lower complex-
ity but centralized version of Algorithm B. The performance of
Algorithm B1 for N = 100 is shown in the 2nd column of
Fig. 13(a) with H ranging from 2 to 30. For comparison, we
also show the performance of the MST algorithm, BIP, and Al-
gorithm B. As before, the best is still Algorithm B and the worst
is still the MST algorithm. Note that Algorithm B1 is closest to
the MST algorithm when H = 2, and closest to Algorithm B
when H = 30 (see also Fig. 12). Further, Algorithm B1 outper-
forms BIP when H ≥ 5. Finally, we observe (but do not show
in Fig. 13(a)) that Algorithm B1 and Algorithm B perform iden-
tically when H ≥ 40.

NGUYEN: GENERAL ALGORITHMS FOR CONSTRUCTION OF BROADCAST AND... 13

B. Algorithm B2

Under Algorithm B, a tree is constructed from scratch, i.e., the
tree initially consists of only the source node, then other nodes
are added into the tree at subsequent steps. The construction
stops when the tree contains all N nodes. We now present an
alternative algorithm called Algorithm B2, in which we select
an initial tree (e.g., MST), and then we attempt to improve this
initial tree to yield a new tree of lower cost. The basic idea is
as follows. At each step of the algorithm, we always refer to a
“benchmark tree” (which is initially set equal to the initial tree).
At each step, we transform the benchmark tree into another tree
called a “test tree”. Then the test tree and the benchmark tree
are compared. If the test tree’s cost is higher than the bench-
mark tree’s cost, then the test tree is discarded. If the test tree’s
cost is lower than the benchmark tree’s cost, then the test tree be-
comes the new benchmark tree (the old benchmark tree is then
discarded). Thus, the new benchmark tree is no worse than the
old benchmark tree at each step. Then the above procedure is
repeated at the next step, and so on. The algorithm stops after
a specified number of steps is reached. The result is the final
(benchmark) tree that is no worse than the initial tree. We need
the following remarks to describe the algorithm more precisely.
Remark 6. (a) Recall that, for a given tree, each non-source
node has a unique parent (the source node has no parent). A tree
rooted at source s is specified by a vector (Ai, i �= s), where Ai

denotes the parent of node i, i.e., if k = Ai, then node k is the
parent of node i. Thus, by changing the parents of some nodes
of a tree, we can transform it into another tree.
(b) Let Tb be a tree specified by a parent vector (Ai, i �= s).
We can use the following rule to transform Tb into another tree.
Let i and k be 2 different nodes of Tb such that i �= s and k
is not a descendant of i. Let j be the parent of i, i.e., j = Ai.
Next, we set Ai = k, i.e., node k becomes the new parent of i,
and j is no longer the parent of i. This parent-switching method
is also used in [8] and [10]. In effect, node k now adjusts its
power to reach node i. Due to the broadcast wireless medium,
this power also reaches any node m such that pkm ≤ pki. Thus,
we also set Am = k for any such node m, provided that k is not
a descendant of m. In summary, we have a simple scheme, in
which node k becomes the new parent of node i (and possibly
also the parent of some other nodes m). The result is a new
tree T , which is derived from Tb and has no loop because we
assume that previously k is a descendant of neither i nor m (as
determined from Tb). Clearly, this new tree is desirable only
if cost(T) < cost(Tb). It can be shown that the parent-switching
scheme and computing the cost (power) of the resulting new tree
can be done in time O(N) for a wireless network of N nodes.
(c) Let k be a node of the tree Tb above, 1 ≤ k ≤ N . We now
use the scheme in Remark 6(b) above to assign k as the new
parent of some other nodes. Denote k(i) as the i-th node closest
to k, e.g., k(1) is the closest node to node k, and k(N − 1) is
the farthest node from node k. First, we assign Ak(1) = k if k is
currently not a descendant of k(1). Next, we assign Ak(2) = k
if k is currently not a descendant of k(2), and so on. Finally,
we assign Ak(N−1) = k if k is currently not a descendant of
k(N − 1). Thus, there are at most N − 1 = O(N) assignments
for each k. Because 1 ≤ k ≤ N , there are O(N) such k’s. Then
the total number of assignments is O(N) × O(N) = O(N2).

In summary, we have a simple procedure (to be used in the fol-
lowing Algorithm B2), in which a tree (Tb) is transformed into
another tree (T). There are O(N2) such procedures.
Algorithm B2: Let Tinit be a tree spanning N nodes. Our
goal is to transform Tinit into a new tree that is no worse than
Tinit (in many cases, the new tree is a better tree). At each
step of the algorithm, we refer to a benchmark tree Tb (initially,
Tb = Tinit). Algorithm B2 has O(N2) steps. Each step imple-
ments the procedure described in Remark 6(c), where the bench-
mark tree Tb is transformed into a new tree T . If d(Tb) ≤ d(T),
then the new tree T is discarded. If d(Tb) > d(T), then
we set Tb = T , i.e., when the new tree has lower cost, the
old benchmark is replaced by the new tree (the old benchmark
tree is then discarded). Thus, a better tree is found at a step
where the benchmark tree is updated. The algorithm stops af-
ter O(N2) steps, and the result is the final benchmark tree Tb

with d(Tb) ≤ d(Tinit). Because each step can be done in time
O(N) by Remark 6(b), the overall complexity of Algorithm B2
is O(N2) × O(N) = O(N3).

1) Performance evaluation: We can view Algorithm B2 as a
system whose input is a tree (Tinit). The output is another tree
(Tb) whose cost is no greater than the input tree cost. Thus, Al-
gorithm B2 can be used to improve the performance of trees.
As seen in the following numerical illustration, the level of the
improvement depends on the types of input trees. Certainly, the
optimal trees cannot be improved by Algorithm B2 or by any
other algorithms. The performance of Algorithm B2 for the in-
put trees constructed by the MST algorithm, BIP, Algorithm B,
and Algorithm B1 (for various values of H) is given in the 3rd
column of Fig. 13(a) for N = 100. In particular, from the 1st
row, when the input trees are MSTs (whose absolute power is
11.53), the absolute power under Algorithm B2 is 10.14, yield-
ing an improved performance of about 13.7%. But, from the
3rd row, when the input trees are constructed by Algorithm B,
the absolute power before and after the application of Algo-
rithm B2 is 9.926 and 9.818, respectively, i.e., the performance
improvement is only about 1.1%. As expected, the improve-
ment of Algorithm B after the application of Algorithm B2 is
small because both algorithms are similar in the sense that they
aim either to minimize or to reduce the target cost directly. In
Algorithm B2, the target cost is evaluated as in Algorithm B.
Thus, Algorithm B2 (of complexity O(N3)) is closely related to
Algorithm B, and is considered as a lower complexity version
of Algorithm B (of complexity O(N4)).

As seen in the 2nd column of Fig. 13(a), before Algorithm B2
is applied, the performance difference among the algorithms
is greater, i.e., the normalized power varies from 1.008 (Al-
gorithm B) to 1.172 (MST). In contrast, after Algorithm B2
is applied (see the 3rd column), the performance difference is
smaller, i.e., the normalized power varies from 1.019 (Algo-
rithm B) to 1.053 (MST). Note also that, with the application of
Algorithm B2, the improved MST (with absolute power 10.14)
outperforms the original BIP (with absolute power 10.81) by
about 6.6%.

Let T be a tree constructed from scratch by some algorithm
called Algorithm X. For example, Algorithm X can be the MST
algorithm, BIP, Algorithm B, or Algorithm B1. We can then ap-
ply Algorithm B2 to the tree T to yield the combined algorithm

14 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

Algo without
Algo B2

with
Algo B2

MST 11.53 (0.645)
1.172 (0.004)

10.14 (0.527)
1.053 (0.001)

BIP 10.81 (0.536)
1.100 (0.004)

9.983 (0.510)
1.037 (0.001)

Algo B 9.926 (0.558)
1.008 (0.000)

9.818 (0.534)
1.019 (0.001)

Algo B1
H = 2

11.20 (0.641)
1.139 (0.004)

10.04 (0.477)
1.043 (0.001)

Algo B1
H = 3

10.94 (0.557)
1.112 (0.003)

9.966 (0.546)
1.035 (0.001)

Algo B1
H = 4

10.82 (0.582)
1.100 (0.003)

9.981 (0.509)
1.037 (0.001)

Algo B1
H = 5

10.67 (0.580)
1.084 (0.003)

9.976 (0.533)
1.036 (0.001)

Algo B 1
H = 10

10.41 (0.646)
1.057 (0.002)

9.927 (0.504)
1.031 (0.001)

Algo B1
H = 20

10.17 (0.580)
1.033 (0.001)

9.895 (0.500)
1.028 (0.001)

Algo B1
H = 30

9.964 (0.578)
1.012 (0.000)

9.821 (0.527)
1.020 (0.001)

Algo without
Algo B2

with
Algo B2

MST 11.04 (0.083)
1.161 (0.001)

9.874 (0.096)
1.056 (0.001)

BIP 10.30 (0.063)
1.083 (0.001)

9.587 (0.057)
1.025 (0.000)

Algo B 9.515 (0.046)
1.000 (0.000)

9.402 (0.044)
1.005 (0.000)

Algo B1
H = 2

10.70 (0.077)
1.125 (0.001)

9.753 (0.072)
1.043 (0.001)

Algo B1
H = 3

10.52 (0.071)
1.106 (0.001)

9.695 (0.067)
1.036 (0.000)

Algo B1
H = 4

10.38 (0.076)
1.092 (0.001)

9.665 (0.072)
1.033 (0.000)

Algo B1
H = 5

10.31 (0.071)
1.084 (0.001)

9.633 (0.052)
1.030 (0.000)

Algo B1
H = 10

10.08 (0.062)
1.060 (0.000)

9.590 (0.059)
1.025 (0.000)

Algo B1
H = 20

9.886 (0.063)
1.039 (0.000)

9.550 (0.056)
1.021 (0.000)

Algo B1
H = 30

9.798 (0.060)
1.030 (0.000)

9.533 (0.053)
1.019 (0.000)

(a)

(b)

Fig. 13. Absolute and normalized broadcast tree power (and their vari-
ances), a = 2: (a) N = 100 nodes, (b) N = 500 nodes.

(Algorithm X, Algorithm B2). Let O(g1(N)) and O(g2(N))
be the computational complexity of Algorithm X and the com-
bined algorithm, respectively. Because the complexity of Al-
gorithm B2 is O(N3), we have O(g2(N)) = O(g1(N)) +
O(N3) = max{O(g1(N)), O(N3)}. Recall from Section V-

A.1 that the complexity of Algorithm B1 is between O(N2)
(when H is small) and O(N4) (when H is large). When Algo-
rithm X is the MST algorithm, BIP, or Algorithm B1 with small
H , we have O(g1(N)) ≤ O(N3), i.e., O(g2(N)) = O(N3).
When Algorithm X is Algorithm B or Algorithm B1 with large
H , we have O(g2(N)) = O(N4). Thus, as seen in the 3rd col-
umn of Fig. 13(a), we have many combined algorithms of com-
plexity O(N3), which underperform the original Algorithm B of
complexity O(N4) only slightly. For example, the combination
of BIP and Algorithm B2 (with absolute power 9.983) underper-
forms the original Algorithm B (with absolute power 9.926) by
about 0.57%. The combination of Algorithm B1 with H = 3
(with absolute power 9.966) and Algorithm B2 underperforms
the original Algorithm B by about 0.4%.

The performance results for larger networks of N = 500
nodes are shown in Fig. 13(b). Again, all algorithms receive
the benefit from the application of Algorithm B2. Also, better
algorithms such as Algorithm B and Algorithm B1 (with larger
H) receives less improvement from Algorithm B2 than other
algorithms such as MST and BIP. Further, the performance dif-
ference among the algorithms before applying Algorithm B2 is
noticeably greater than the performance difference after apply-
ing Algorithm B2.
Remark 7. Algorithms B1 and B2 are originally developed for
broadcasting. However, they can also be used for multicasting
as follows. Let T be any multicast tree (e.g., SPF or ISPF tree).
First, recall that the MST (a broadcast tree) is used in phase 1
of Algorithm B1. Suppose that the MST is replaced by the mul-
ticast tree T , then Algorithm B1 will produce a multicast tree.
Next, recall that any tree can be used as input to Algorithm B2.
Suppose that the input to Algorithm B2 is the multicast tree T ,
then the output is another multicast tree that is no worse than T .

VI. SUMMARY

We present Algorithm B for constructing broadcast trees, and
then we modify it to yield Algorithm M for multicasting. Both
algorithms are general because they are meant for arbitrary non-
negative cost functions. Thus, they are ready to serve as baseline
algorithms for any existing cost functions as well as any new
cost functions that may arise in future applications. As illustra-
tive examples, we apply these general algorithms to the prob-
lem of broadcast and multicast routing in energy-aware wire-
less networks, which recently receives great attention. We show
the performance of these algorithms for the use of omnidirec-
tional and directional antennas. We also address the impact of
constraints on resources such as energy, transceivers, and fre-
quencies. These general algorithms improve on some existing
algorithms (such as MST, BIP, MIP, SPF, and D-MIP).

A disadvantage of these general algorithms is their high com-
putational complexity. In particular, for networks of N nodes,
the complexity of Algorithm B is O(N4), while that of MST
and BIP is O(N2) and O(N3), respectively. Another disadvan-
tage is that they are centralized algorithms, requiring the full
network information for tree construction. Thus, we adapt these
baseline algorithms to yield 2 lower complexity algorithms. The
first is Algorithm B1, under which the entire network is divided
into smaller subsets whose sizes are controlled by the param-

NGUYEN: GENERAL ALGORITHMS FOR CONSTRUCTION OF BROADCAST AND... 15

eter H, 1 ≤ H ≤ N . The performance and complexity of
Algorithm B1 are somewhere between those of the MST and
Algorithm B, depending on whether H is small or large. Algo-
rithm B1 has distributed implementation when H is small, i.e.,
only partial network information is needed for tree construction.

Algorithm B2 is another lower complexity algorithm that has
complexity O(N3) for a given input tree. Algorithm B2 is ef-
fective because when combining with MST, BIP, or some Algo-
rithm B1 trees, it yields algorithms of complexity O(N3), which
underperform the original Algorithm B of complexity O(N4)
only slightly. Although both Algorithms B1 and B2 are lower
complexity versions of Algorithm B, the former is a distributed
algorithm and the latter is a centralized one.

ACKNOWLEDGMENT

This work was supported by the Office of Naval Research.

REFERENCES
[1] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “Energy-aware wire-

less networking with directional antennas: The case of session-based
broadcasting and multicasting,” IEEE Trans. Mobile Computing, vol. 1,
no. 3, pp. 176–191, July–Sept. 2002.

[2] G. D. Nguyen, “Construction of broadcast and multicast trees with ar-
bitrary cost functions,” in Proc. Conf. Inform. Sci. Syst., Mar. 2002,
pp. 1046–1051.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Englewood Cliffs, NJ: Prentice Hall, 1993.

[4] D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Englewood Cliffs,
NJ: Prentice Hall, 1992.

[5] D. S. Hochbaum, Approximation Algorithms for NP-Hard Problems,
Boston, MA: PWS Publishing Company, 1997.

[6] A. Ahluwalia, E. Modiano, and L. Shu, “On the complexity and distributed
construction of energy-efficient broadcast trees in static ad hoc wireless
networks,” in Proc. Conf. Inform. Sci. Syst., Mar. 2002, pp. 807–813.

[7] F. Bian, A. Goel, C. S. Raghavendra, and X. Li, “Energy-efficient broad-
casting in wireless ad hoc networks: Lower bounds and algorithms,” J.
Interconnection Networks, vol. 3, no. 3/4, pp. 149–166, Sept./Dec. 2002.

[8] M. Cagalj, J.-P. Hubaux, and C. Enz, “Minimum-energy broadcast in all-
wireless networks: NP-completeness, and distribution issues,” in Proc.
MOBICOM 2002, Sept. 2002, pp. 172–182.

[9] A. E. F. Clementi, P. Crescenzi, P. Penna, P. Rossi, and P. Vocca, “On the
complexity of computing minimum energy consumption broadcast sub-
graphs,” in Proc. Symp. Theoretical Aspects Computer Sci., 2001, pp. 121–
132.

[10] F. Li and I. Nikolaidis, “On minimum-energy broadcasting in all-wireless
networks,” in Proc. IEEE Local Computer Networks, Nov. 2001, pp. 193–
202.

[11] W. Liang, “Constructing minimum-energy broadcast trees in wireless ad-
hoc networks,” in Proc. MOBIHOC 2002, June 2002, pp. 112–122.

[12] P.-J. Wan, G. Calinescu, and C.-W. Yi, “Minimum-power multicast routing
in static ad hoc wireless networks,” IEEE/ACM Trans. Networking, vol. 12,
no. 3, pp. 507–514, June 2004.

[13] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder, “Minimum-energy
broadcast in static ad hoc wireless networks,” in Proc. IEEE INFOCOM
2001, Apr. 2001, pp. 1162-1171.

[14] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “On the construction
of energy-efficient broadcast and multicast trees in wireless networks,” in
Proc. IEEE INFOCOM 2000, Mar. 2000, pp. 585–594.

[15] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner
trees,” Acta Informatica, vol. 15, pp. 141–145, 1981.

[16] B. M. Waxman, “Routing of multipoint connections,” IEEE J. Select. Ar-
eas Commun., vol. 6, no. 9, pp. 1617–1622, Dec. 1988.

[17] K. Mehlhorn, “A faster approximation algorithm for the Steiner problem
in graphs,” Inform. Processing Lett., vol. 27, pp. 125–128, Mar. 1988.

[18] A. Ephremides, “Energy concerns in wireless networks,” IEEE Wireless
Commun., vol. 9, no. 4, pp. 48–59, Aug. 2002.

[19] A. Ephremides, “Ad-hoc networks: Not an ad-hoc field any more,” Wiley
J. Wireless Commun. Mobile Computing, vol. 2, no. 5, pp. 441–448, Aug.
2002.

[20] I. Stojmenovic, Handbook of Wireless Networks and Mobile Computing,
New York: John Wiley & Son, Inc., 2002.

Gam D. Nguyen received the Ph.D. in electrical en-
gineering from the University of Maryland, College
Park, MD in 1990. He has been at the Naval Re-
search Laboratory, Washington, DC, since 1991. His
research interests include communication systems and
networks.

